\(\int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx\) [1212]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 81 \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {b \cot ^6(c+d x)}{6 d}-\frac {b \cot ^8(c+d x)}{8 d}-\frac {a \csc ^5(c+d x)}{5 d}+\frac {2 a \csc ^7(c+d x)}{7 d}-\frac {a \csc ^9(c+d x)}{9 d} \]

[Out]

-1/6*b*cot(d*x+c)^6/d-1/8*b*cot(d*x+c)^8/d-1/5*a*csc(d*x+c)^5/d+2/7*a*csc(d*x+c)^7/d-1/9*a*csc(d*x+c)^9/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2913, 2686, 276, 2687, 14} \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {a \csc ^9(c+d x)}{9 d}+\frac {2 a \csc ^7(c+d x)}{7 d}-\frac {a \csc ^5(c+d x)}{5 d}-\frac {b \cot ^8(c+d x)}{8 d}-\frac {b \cot ^6(c+d x)}{6 d} \]

[In]

Int[Cot[c + d*x]^5*Csc[c + d*x]^5*(a + b*Sin[c + d*x]),x]

[Out]

-1/6*(b*Cot[c + d*x]^6)/d - (b*Cot[c + d*x]^8)/(8*d) - (a*Csc[c + d*x]^5)/(5*d) + (2*a*Csc[c + d*x]^7)/(7*d) -
 (a*Csc[c + d*x]^9)/(9*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2686

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2913

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]),
 x_Symbol] :> Dist[a, Int[Cos[e + f*x]^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[Cos[e + f*x]^p*(d*Sin[e +
f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && IntegerQ[n] && ((LtQ[p, 0]
&& NeQ[a^2 - b^2, 0]) || LtQ[0, n, p - 1] || LtQ[p + 1, -n, 2*p + 1])

Rubi steps \begin{align*} \text {integral}& = a \int \cot ^5(c+d x) \csc ^5(c+d x) \, dx+b \int \cot ^5(c+d x) \csc ^4(c+d x) \, dx \\ & = -\frac {a \text {Subst}\left (\int x^4 \left (-1+x^2\right )^2 \, dx,x,\csc (c+d x)\right )}{d}-\frac {b \text {Subst}\left (\int x^5 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -\frac {a \text {Subst}\left (\int \left (x^4-2 x^6+x^8\right ) \, dx,x,\csc (c+d x)\right )}{d}-\frac {b \text {Subst}\left (\int \left (x^5+x^7\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -\frac {b \cot ^6(c+d x)}{6 d}-\frac {b \cot ^8(c+d x)}{8 d}-\frac {a \csc ^5(c+d x)}{5 d}+\frac {2 a \csc ^7(c+d x)}{7 d}-\frac {a \csc ^9(c+d x)}{9 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.20 \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {b \csc ^4(c+d x)}{4 d}-\frac {a \csc ^5(c+d x)}{5 d}+\frac {b \csc ^6(c+d x)}{3 d}+\frac {2 a \csc ^7(c+d x)}{7 d}-\frac {b \csc ^8(c+d x)}{8 d}-\frac {a \csc ^9(c+d x)}{9 d} \]

[In]

Integrate[Cot[c + d*x]^5*Csc[c + d*x]^5*(a + b*Sin[c + d*x]),x]

[Out]

-1/4*(b*Csc[c + d*x]^4)/d - (a*Csc[c + d*x]^5)/(5*d) + (b*Csc[c + d*x]^6)/(3*d) + (2*a*Csc[c + d*x]^7)/(7*d) -
 (b*Csc[c + d*x]^8)/(8*d) - (a*Csc[c + d*x]^9)/(9*d)

Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.90

method result size
derivativedivides \(-\frac {\frac {\left (\csc ^{9}\left (d x +c \right )\right ) a}{9}+\frac {b \left (\csc ^{8}\left (d x +c \right )\right )}{8}-\frac {2 \left (\csc ^{7}\left (d x +c \right )\right ) a}{7}-\frac {b \left (\csc ^{6}\left (d x +c \right )\right )}{3}+\frac {\left (\csc ^{5}\left (d x +c \right )\right ) a}{5}+\frac {b \left (\csc ^{4}\left (d x +c \right )\right )}{4}}{d}\) \(73\)
default \(-\frac {\frac {\left (\csc ^{9}\left (d x +c \right )\right ) a}{9}+\frac {b \left (\csc ^{8}\left (d x +c \right )\right )}{8}-\frac {2 \left (\csc ^{7}\left (d x +c \right )\right ) a}{7}-\frac {b \left (\csc ^{6}\left (d x +c \right )\right )}{3}+\frac {\left (\csc ^{5}\left (d x +c \right )\right ) a}{5}+\frac {b \left (\csc ^{4}\left (d x +c \right )\right )}{4}}{d}\) \(73\)
parallelrisch \(-\frac {3 \left (\csc ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\sec ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (a \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\cos \left (2 d x +2 c \right )+\frac {7 \cos \left (4 d x +4 c \right )}{12}+\frac {109}{108}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {29855 b \left (\cos \left (2 d x +2 c \right )+\frac {2561 \cos \left (4 d x +4 c \right )}{5118}+\frac {73 \cos \left (6 d x +6 c \right )}{2559}-\frac {73 \cos \left (8 d x +8 c \right )}{20472}+\frac {5975}{6824}\right )}{12288}\right )}{35840 d}\) \(118\)
risch \(-\frac {4 \left (504 i a \,{\mathrm e}^{13 i \left (d x +c \right )}+315 b \,{\mathrm e}^{14 i \left (d x +c \right )}+864 i a \,{\mathrm e}^{11 i \left (d x +c \right )}+105 b \,{\mathrm e}^{12 i \left (d x +c \right )}+1744 i a \,{\mathrm e}^{9 i \left (d x +c \right )}+630 b \,{\mathrm e}^{10 i \left (d x +c \right )}+864 i a \,{\mathrm e}^{7 i \left (d x +c \right )}-630 b \,{\mathrm e}^{8 i \left (d x +c \right )}+504 i a \,{\mathrm e}^{5 i \left (d x +c \right )}-105 b \,{\mathrm e}^{6 i \left (d x +c \right )}-315 b \,{\mathrm e}^{4 i \left (d x +c \right )}\right )}{315 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{9}}\) \(157\)

[In]

int(cos(d*x+c)^5*csc(d*x+c)^10*(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/d*(1/9*csc(d*x+c)^9*a+1/8*b*csc(d*x+c)^8-2/7*csc(d*x+c)^7*a-1/3*b*csc(d*x+c)^6+1/5*csc(d*x+c)^5*a+1/4*b*csc
(d*x+c)^4)

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.42 \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {504 \, a \cos \left (d x + c\right )^{4} - 288 \, a \cos \left (d x + c\right )^{2} + 105 \, {\left (6 \, b \cos \left (d x + c\right )^{4} - 4 \, b \cos \left (d x + c\right )^{2} + b\right )} \sin \left (d x + c\right ) + 64 \, a}{2520 \, {\left (d \cos \left (d x + c\right )^{8} - 4 \, d \cos \left (d x + c\right )^{6} + 6 \, d \cos \left (d x + c\right )^{4} - 4 \, d \cos \left (d x + c\right )^{2} + d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^10*(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2520*(504*a*cos(d*x + c)^4 - 288*a*cos(d*x + c)^2 + 105*(6*b*cos(d*x + c)^4 - 4*b*cos(d*x + c)^2 + b)*sin(d
*x + c) + 64*a)/((d*cos(d*x + c)^8 - 4*d*cos(d*x + c)^6 + 6*d*cos(d*x + c)^4 - 4*d*cos(d*x + c)^2 + d)*sin(d*x
 + c))

Sympy [F(-1)]

Timed out. \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**10*(a+b*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.86 \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {630 \, b \sin \left (d x + c\right )^{5} + 504 \, a \sin \left (d x + c\right )^{4} - 840 \, b \sin \left (d x + c\right )^{3} - 720 \, a \sin \left (d x + c\right )^{2} + 315 \, b \sin \left (d x + c\right ) + 280 \, a}{2520 \, d \sin \left (d x + c\right )^{9}} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^10*(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/2520*(630*b*sin(d*x + c)^5 + 504*a*sin(d*x + c)^4 - 840*b*sin(d*x + c)^3 - 720*a*sin(d*x + c)^2 + 315*b*sin
(d*x + c) + 280*a)/(d*sin(d*x + c)^9)

Giac [A] (verification not implemented)

none

Time = 0.39 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.86 \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {630 \, b \sin \left (d x + c\right )^{5} + 504 \, a \sin \left (d x + c\right )^{4} - 840 \, b \sin \left (d x + c\right )^{3} - 720 \, a \sin \left (d x + c\right )^{2} + 315 \, b \sin \left (d x + c\right ) + 280 \, a}{2520 \, d \sin \left (d x + c\right )^{9}} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^10*(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/2520*(630*b*sin(d*x + c)^5 + 504*a*sin(d*x + c)^4 - 840*b*sin(d*x + c)^3 - 720*a*sin(d*x + c)^2 + 315*b*sin
(d*x + c) + 280*a)/(d*sin(d*x + c)^9)

Mupad [B] (verification not implemented)

Time = 11.56 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.86 \[ \int \cot ^5(c+d x) \csc ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {\frac {b\,{\sin \left (c+d\,x\right )}^5}{4}+\frac {a\,{\sin \left (c+d\,x\right )}^4}{5}-\frac {b\,{\sin \left (c+d\,x\right )}^3}{3}-\frac {2\,a\,{\sin \left (c+d\,x\right )}^2}{7}+\frac {b\,\sin \left (c+d\,x\right )}{8}+\frac {a}{9}}{d\,{\sin \left (c+d\,x\right )}^9} \]

[In]

int((cos(c + d*x)^5*(a + b*sin(c + d*x)))/sin(c + d*x)^10,x)

[Out]

-(a/9 + (b*sin(c + d*x))/8 - (2*a*sin(c + d*x)^2)/7 + (a*sin(c + d*x)^4)/5 - (b*sin(c + d*x)^3)/3 + (b*sin(c +
 d*x)^5)/4)/(d*sin(c + d*x)^9)